

Sample &

Buy

MC33063A, MC34063A

SLLS636N-DECEMBER 2004-REVISED JANUARY 2015

MC3x063A 1.5-A Peak Boost/Buck/Inverting Switching Regulators

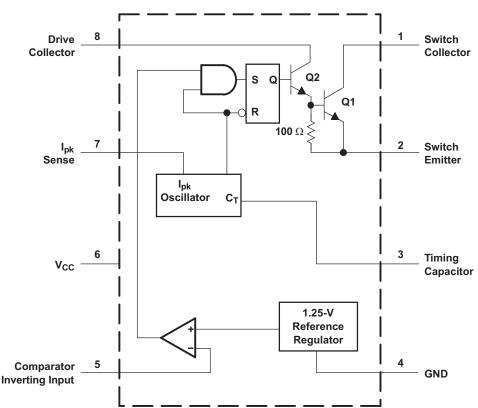
1 Features

- Wide Input Voltage Range: 3 V to 40 V
- High Output Switch Current: Up to 1.5 A
- Adjustable Output Voltage
- Oscillator Frequency Up to 100 kHz
- Precision Internal Reference: 2%
- Short-Circuit Current Limiting
- Low Standby Current

2 Applications

- Blood Gas Analyzers: Portable
- Cable Solutions
- HMIs (Human Machine Interfaces)
- Telecommunications
- Portable Devices
- Consumer & Computing
- Test & Measurement

3 Description


The MC33063A and MC34063A devices are easy-touse ICs containing all the primary circuitry needed for building simple DC-DC converters. These devices primarily consist of an internal temperaturecompensated reference, a comparator, an oscillator, a PWM controller with active current limiting, a driver, and a high-current output switch. Thus, the devices require minimal external components to build converters in the boost, buck, and inverting topologies.

The MC33063A device is characterized for operation from -40° C to 85° C, while the MC34063A device is characterized for operation from 0° C to 70° C.

Device Information⁽¹⁾

PART NUMBER	PACKAGE (PIN)	BODY SIZE
	SOIC (8)	4.90 mm × 3.91 mm
MC3x063A	SON (8)	4.00 mm × 4.00 mm
	PDIP (8)	9.81 mm × 6.35 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

4 Simplified Schematic

Features 1

Applications 1

Description 1

Simplified Schematic..... 1

Revision History..... 2

Pin Configuration and Functions 3

Absolute Maximum Ratings 4

7.4 Thermal Information 4 7.5 Electrical Characteristics—Oscillator 4 7.7 Electrical Characteristics—Comparator 5 7.8 Electrical Characteristics—Total Device 5 7.9 Typical Characteristics 6 Detailed Description7

ESD Ratings..... 4 Recommended Operating Conditions 4

2

Overview7 8.1 Functional Block Diagram7 8.2 Feature Description......7 8.3 Device Functional Modes......7 8.4 Application and Implementation8 9 9.1 9.2

10	Pow	er Supply Recommendations	. 17
11	Layo	out	. 17
	11.1	Layout Guidelines	. 17
	11.2	Layout Example	. 17
12	Devi	ce and Documentation Support	. 18
	12.1	Related Links	. 18
	12.2	Trademarks	. 18
	12.3	Electrostatic Discharge Caution	18
	12.4	Glossary	. 18
13	Mec	hanical, Packaging, and Orderable	
	Infor	mation	. 18

Copyright © 2004–2015, Texas Instruments Incorporated

5 Revision History

Cł	hanges from Revision M (January 2011) to Revision N		
•	Added Applications, Device Information table, Pin Functions table, ESD Ratings table, Thermal Information table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical,		
	Packaging, and Orderable Information section.	1	
•	Deleted Ordering Information table.	1	

Table of Contents

MC33063A, MC34063A
SLLS636N-DECEMBER 2004-REVISED JANUARY 201

1

2

3

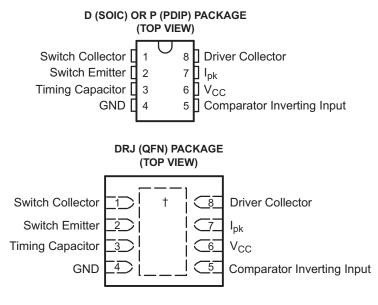
4

5

6

7

8


7.1 7.2

7.3

www.ti.com

6 Pin Configuration and Functions

[†] The exposed thermal pad is electrically bonded internally to pin 4 (GND) .

Pin Functions

PIN		TYPE	DESCRIPTION	
NAME	NO.	TTPE	DESCRIPTION	
Switch Collector	1	I/O	High-current internal switch collector input.	
Switch Emitter	2	I/O	High-current internal switch emitter output.	
Timing Capacitor	3	—	Attach a timing capacitor to change the switching frequency.	
GND	4	_	Ground	
Comparator Inverting Input	5	I	Attach to a resistor divider network to create a feedback loop.	
V _{CC}	6	I	Logic supply voltage. Tie to V _{IN} .	
I _{PK}	7	Ι	Current-limit sense input.	
Driver Collector	8	I/O	Darlington pair driving transistor collector input.	

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

				MIN	MAX	UNIT
V _{CC}	Supply voltage				40	V
V _{IR}	Comparator inverting input voltage range			-0.3	40	V
V _{C(switch)}	Switch collector voltage				40	V
V _{E(switch)}	Switch emitter voltage	V _{PIN1} =	40 V		40	V
V _{CE(switch)}	Switch collector to switch emitter voltage				40	V
V _{C(driver)}	Driver collector voltage				40	V
I _{C(driver)}	Driver collector current				100	mA
I _{SW}	Switch current				1.5	А
TJ	Operating virtual junction temperature				150	°C
T _{stg}	Storage temperature range			-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	2500	
V _(ESD)	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all $\ensuremath{\text{pins}}^{(2)}$	1500	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

		MIN	MAX	UNIT
V_{CC}	Supply voltage	3	40	V
-	MC33063A	-40	85	°C
I _A Operatin	Operating free-air temperature MC34063A	0	70	-0

7.4 Thermal Information

THERMAL METRIC ⁽¹⁾		MC33063A			
	THERMAL METRIC ⁽¹⁾	D	DRJ	Р	UNIT
			8 PINS		
$R_{\theta JA}$	Junction-to-ambient thermal resistance	97	41	85	°C/W

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report (SPRA953).

7.5 Electrical Characteristics—Oscillator

 $V_{CC} = 5 \text{ V}, T_{A} = \text{full operating range (unless otherwise noted) (see block diagram)}$

	PARAMETER	TEST CONDITIONS	TA	MIN	TYP	MAX	UNIT
f _{osc}	Oscillator frequency	V _{PIN5} = 0 V, C _T = 1 nF	25°C	24	33	42	kHz
I _{chg}	Charge current	$V_{CC} = 5 V$ to 40 V	25°C	24	35	42	μA
I _{dischg}	Discharge current	$V_{CC} = 5 V$ to 40 V	25°C	140	220	260	μA
I _{dischg} /I _{chg}	Discharge-to-charge current ratio	$V_{PIN7} = V_{CC}$	25°C	5.2	6.5	7.5	—
V _{lpk}	Current-limit sense voltage	I _{dischg} = I _{chg}	25°C	250	300	350	mV

7.6 Electrical Characteristics—Output Switch

$V_{ee} = 5 V T_{e}$	= full operating ra	ange (unless	otherwise noted)	(see block dia	aram) ⁽¹⁾
$v_{CC} = 0 v, r_A$	- run operating re	ange (uniess	otherwise noted)	(See block ula	grann)

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
V _{CE(sat)}	Saturation voltage – Darlington connection	I_{SW} = 1 A, pins 1 and 8 connected	Full range		1	1.3	V
V _{CE(sat)}	Saturation voltage – non-Darlington connection ⁽²⁾	I_{SW} = 1 A, R_{PIN8} = 82 Ω to $V_{CC},$ forced β ~ 20	Full range		0.45	0.7	V
h _{FE}	DC current gain	I _{SW} = 1 A, V _{CE} = 5 V	25°C	50	75		_
I _{C(off)}	Collector off-state current	V _{CE} = 40 V	Full range		0.01	100	μA

(1) Low duty-cycle pulse testing is used to maintain junction temperature as close to ambient temperature as possible.

(2) In the non-Darlington configuration, if the output switch is driven into hard saturation at low switch currents (≤300 mA) and high driver currents (≥30 mA), it may take up to 2 µs for the switch to come out of saturation. This condition effectively shortens the off time at frequencies ≥30 kHz, becoming magnified as temperature increases. The following output drive condition is recommended in the non-Darlington configuration:

Forced β of output switch = I_{C,SW} / (I_{C,driver} - 7 mA) ≥ 10, where ~7 mA is required by the 100- Ω resistor in the emitter of the driver to forward bias the V_{be} of the switch.

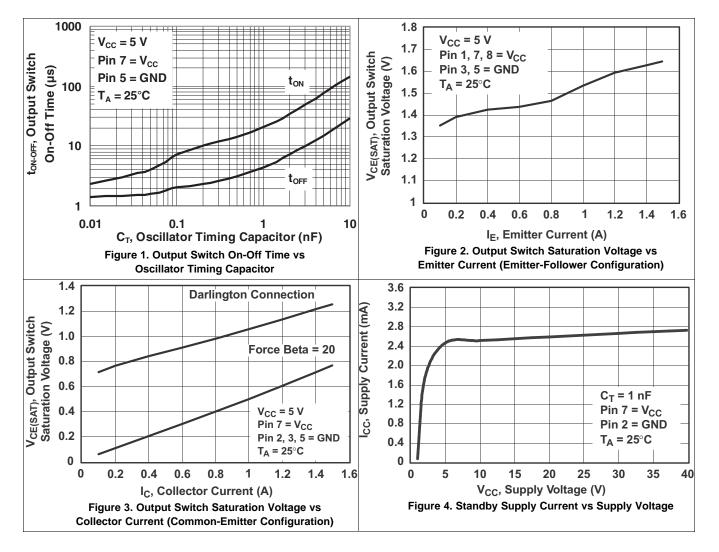
7.7 Electrical Characteristics—Comparator

 $V_{CC} = 5 V$, $T_A =$ full operating range (unless otherwise noted) (see block diagram)

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
V _{th} T	Threshold voltage		25°C	1.225	1.25	1.275	V
			Full range	1.21		1.29	v
ΔV_{th}	Threshold-voltage line regulation	$V_{CC} = 5 V$ to 40 V	Full range		1.4	5	mV
I _{IB}	Input bias current	$V_{IN} = 0 V$	Full range		-20	-400	nA

7.8 Electrical Characteristics—Total Device

 $V_{CC} = 5 \text{ V}, T_{A} = \text{full operating range (unless otherwise noted) (see block diagram)}$


	PARAMETER	TEST CONDITIONS	T _A	MIN	MAX	UNIT
I _{CC}	Supply current		Full range		4	mA

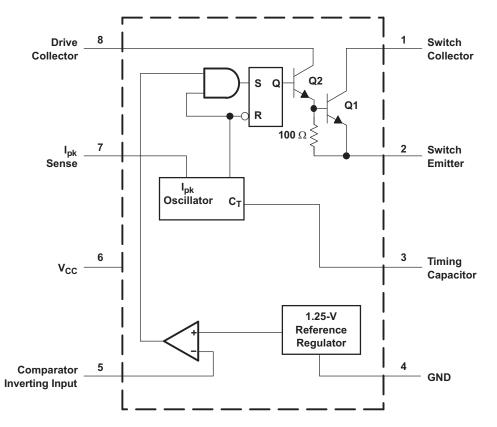
MC33063A, MC34063A SLLS636N – DECEMBER 2004 – REVISED JANUARY 2015

www.ti.com

7.9 Typical Characteristics

Copyright © 2004–2015, Texas Instruments Incorporated

8 Detailed Description


8.1 Overview

www.ti.com

The MC33063A and MC34063A devices are easy-to-use ICs containing all the primary circuitry needed for building simple DC-DC converters. These devices primarily consist of an internal temperature-compensated reference, a comparator, an oscillator, a PWM controller with active current limiting, a driver, and a high-current output switch. Thus, the devices require minimal external components to build converters in the boost, buck, and inverting topologies.

The MC33063A device is characterized for operation from -40°C to 85°C, while the MC34063A device is characterized for operation from 0°C to 70°C.

8.2 Functional Block Diagram

8.3 Feature Description

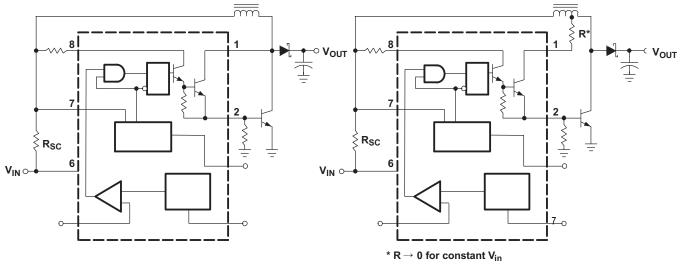
- Wide Input Voltage Range: 3 V to 40 V
- High Output Switch Current: Up to 1.5 A
- Adjustable Output Voltage
- Oscillator Frequency Up to 100 kHz
- Precision Internal Reference: 2%
- Short-Circuit Current Limiting
- Low Standby Current

8.4 Device Functional Modes

8.4.1 Standard operation

Based on the application, the device can be configured in multiple different topologies. See the *Application and Implementation* section for how to configure the device in several different operating modes.

Copyright © 2004–2015, Texas Instruments Incorporated


9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

9.1.1 External Switch Configurations for Higher Peak Current

a) EXTERNAL npn SWITCH

b) EXTERNAL npn SATURATED SWITCH (see Note A)

A. If the output switch is driven into hard saturation (non-Darlington configuration) at low switch currents (≤300 mA) and high driver currents (≥30 mA), it may take up to 2 µs to come out of saturation. This condition will shorten the off time at frequencies ≥30 kHz and is magnified at high temperatures. This condition does not occur with a Darlington configuration because the output switch cannot saturate. If a non-Darlington configuration is used, the output drive configuration in Figure 7b is recommended.

Figure 5. Boost Regulator Connections for I_C Peak Greater Than 1.5 A

8

MC33063A, MC34063A SLLS636N – DECEMBER 2004 – REVISED JANUARY 2015

Application Information (continued)

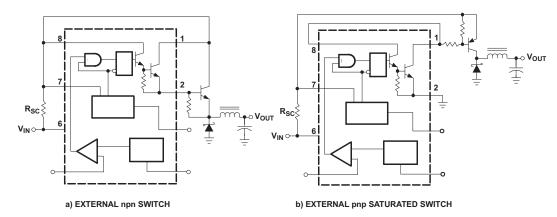


Figure 6. Buck Regulator Connections for I_C Peak Greater Than 1.5 A

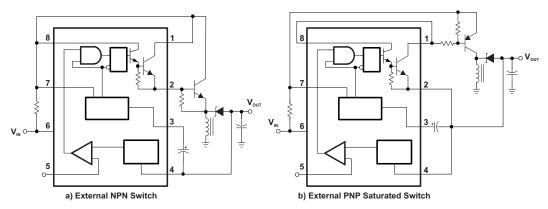
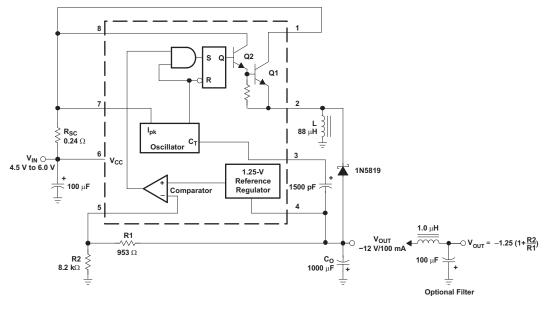



Figure 7. Inverting Regulator Connections for $\rm I_{C}$ Peak Greater Than 1.5 A

9.2 Typical Application

Copyright © 2004–2015, Texas Instruments Incorporated

Typical Application (continued)

Figure 8. Voltage-Inverting Converter

MC33063A, MC34063A SLLS636N – DECEMBER 2004 – REVISED JANUARY 2015

www.ti.com

Typical Application (continued)

9.2.1.1 Design Requirements

The user must determine the following desired parameters:

V_{sat} = Saturation voltage of the output switch

 V_F = Forward voltage drop of the chosen output rectifier

The following power-supply parameters are set by the user:

V_{in} = Nominal input voltage

V_{out} = Desired output voltage

 I_{out} = Desired output current

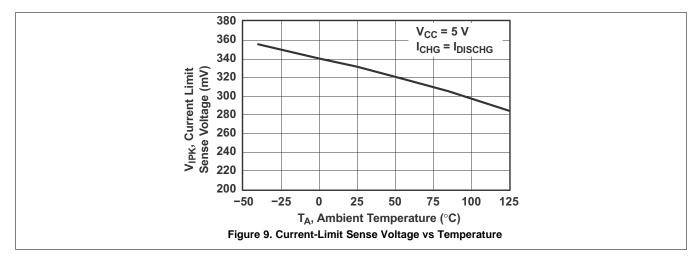
 f_{min} = Minimum desired output switching frequency at the selected values of V_{in} and I_{out}

 V_{ripple} = Desired peak-to-peak output ripple voltage. The ripple voltage directly affects the line and load regulation and, thus, must be considered. In practice, the actual capacitor value should be larger than the calculated value, to account for the capacitor's equivalent series resistance and board layout.

9.2.1.2 Detailed Design Procedure

CALCULATION	VOLTAGE INVERTING
t _{on} /t _{off}	$\frac{ V_{out} + V_F}{V_{in} - V_{sat}}$
$(t_{on} + t_{off})$	$\frac{1}{f}$
t _{off}	$\frac{\frac{t_{on} + t_{off}}{t_{on}}}{\frac{t_{on}}{t_{off}} + 1}$
t _{on}	$\frac{(t_{on} + t_{off}) - t_{off}}{4 \times 10^{-5} t_{on}}$
CT	$4 \times 10^{-5} t_{on}$
I _{pk(switch)}	$2I_{out(max)}\left(\frac{t_{on}}{t_{off}}+1\right)$
R _{sc}	0.3 I _{pk(switch)}
L _(min)	$\left(\frac{\left(V_{in(min)} - V_{sat}\right)}{I_{pk(switch)}}\right) t_{on(max)}$
Co	$9 \frac{I_{out} t_{on}}{V_{ripple(pp)}}$
V _{out}	$-1.25 \left(1 + \frac{R2}{R1}\right)$ See Figure 8

MC33063A, MC34063A


SLLS636N-DECEMBER 2004-REVISED JANUARY 2015

STRUMENTS

EXAS

9.2.1.3 Application Performance

TEST	CONDITIONS	RESULTS
Line regulation	V_{IN} = 4.5 V to 6 V, I _O = 100 mA	3 mV ± 0.12%
Load regulation	$V_{IN} = 5 \text{ V}, I_{O} = 10 \text{ mA to } 100 \text{ mA}$	0.022 V ± 0.09%
Output ripple	$V_{IN} = 5 V, I_{O} = 100 mA$	500 mV _{PP}
Short-circuit current	$V_{IN} = 5 \text{ V}, \text{ R}_{L} = 0.1 \Omega$	910 mA
Efficiency	V _{IN} = 5 V, I _O = 100 mA	62.2%
Output ripple with optional filter	$V_{IN} = 5 V, I_O = 100 mA$	70 mV _{PP}

MC33063A, MC34063A SLLS636N – DECEMBER 2004 – REVISED JANUARY 2015

www.ti.com

9.2.2 Step-Up Converter Application

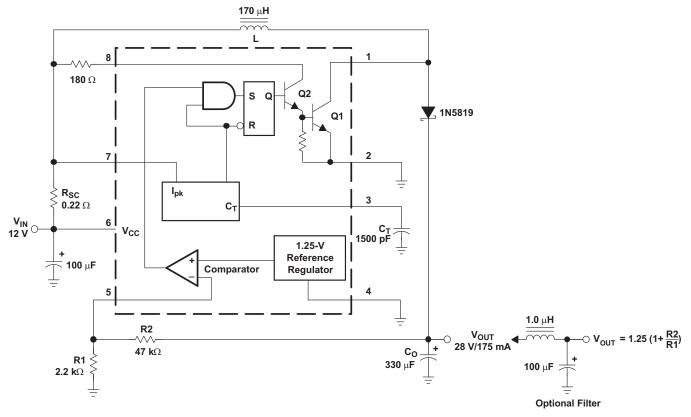


Figure 10. Step-Up Converter

9.2.2.1 Design Requirements

The user must determine the following desired parameters:

V_{sat} = Saturation voltage of the output switch

 V_F = Forward voltage drop of the chosen output rectifier

The following power-supply parameters are set by the user:

V_{in} = Nominal input voltage

V_{out} = Desired output voltage

I_{out} = Desired output current

 f_{min} = Minimum desired output switching frequency at the selected values of V_{in} and I_{out}

 V_{ripple} = Desired peak-to-peak output ripple voltage. The ripple voltage directly affects the line and load regulation and, thus, must be considered. In practice, the actual capacitor value should be larger than the calculated value, to account for the capacitor's equivalent series resistance and board layout.

MC33063A, MC34063A

SLLS636N-DECEMBER 2004-REVISED JANUARY 2015

www.ti.com

9.2.2.2 Detailed Design Procedure

CALCULATION	STEP UP
t _{on} /t _{off}	$\frac{V_{out} + V_{F-Vin(min)}}{V_{in(min)} - V_{sat}}$
(t _{on} + t _{off})	1 f
t _{off}	$\frac{\frac{t_{on} + t_{off}}{t_{on}}}{\frac{t_{on}}{t_{off}}} + 1$
t _{on}	$(t_{on} + t_{off}) - t_{off}$
CT	$4 \times 10^{-5} t_{on}$
I _{pk(switch)}	$2I_{out(max)}\left(rac{t_{on}}{t_{off}}+1 ight)$
R _{SC}	0.3 I _{pk(switch)}
L _(min)	$\left(\frac{\left(V_{in(min)} - V_{sat}\right)}{I_{pk(switch)}}\right) t_{on(max)}$
Co	9 <mark>I_{out}t_{on} V_{ripple(pp)}</mark>
V _{out}	$1.25 \left(1 + \frac{R2}{R1}\right)$ See Figure 10

9.2.2.3 Application Performance

TEST	CONDITIONS	RESULTS		
Line regulation	$V_{IN} = 8$ V to 16 V, $I_O = 175$ mA	30 mV ± 0.05%		
Load regulation	V_{IN} = 12 V, I_O = 75 mA to 175 mA	10 mV ± 0.017%		
Output ripple	V _{IN} = 12 V, I _O = 175 mA	400 mV _{PP}		
Efficiency	V _{IN} = 12 V, I _O = 175 mA	87.7%		
Output ripple with optional filter	V _{IN} = 12 V, I _O = 175 mA	40 mV _{PP}		

9.2.3 Step-Down Converter Application

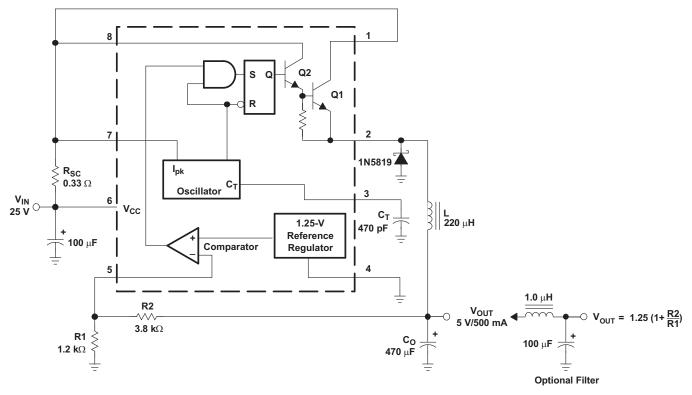


Figure 11. Step-Down Converter

9.2.3.1 Design Requirements

The user must determine the following desired parameters:

V_{sat} = Saturation voltage of the output switch

V_F = Forward voltage drop of the chosen output rectifier

The following power-supply parameters are set by the user:

V_{in} = Nominal input voltage

V_{out} = Desired output voltage

I_{out} = Desired output current

 f_{min} = Minimum desired output switching frequency at the selected values of V_{in} and I_{out}

 V_{ripple} = Desired peak-to-peak output ripple voltage. The ripple voltage directly affects the line and load regulation and, thus, must be considered. In practice, the actual capacitor value should be larger than the calculated value, to account for the capacitor's equivalent series resistance and board layout.

MC33063A, MC34063A

SLLS636N-DECEMBER 2004-REVISED JANUARY 2015

www.ti.com

9.2.3.2 Detailed Design Procedure

CALCULATION	STEP DOWN
t _{on} /t _{off}	$\frac{V_{out} + V_{F}}{V_{in(min)} - V_{sat} - V_{out}}$
(t _{on} + t _{off})	1 f
t _{off}	$\frac{\frac{t_{on} + t_{off}}{t_{on}}}{\frac{t_{on}}{t_{off}} + 1}$
t _{on}	$(t_{on} + t_{off}) - t_{off}$
CT	$4 \times 10^{-5} t_{on}$
I _{pk(switch)}	2I _{out(max)}
R _{SC}	0.3 I _{pk(switch)}
L _(min)	$\left(\frac{\left(V_{in(min)} - V_{sat} - V_{out}\right)}{I_{pk(switch)}}\right) t_{on(max)}$
Co	$\frac{I_{pk(switch)}(t_{on} + t_{off})}{8V_{ripple(pp)}}$
V _{out}	$1.25 \left(1 + \frac{R2}{R1}\right)$ See Figure 11

9.2.3.3 Application Performance

TEST	CONDITIONS	RESULTS		
Line regulation	V_{IN} = 15 V to 25 V, I_O = 500 mA	12 mV ± 0.12%		
Load regulation	$V_{IN} = 25 \text{ V}, I_O = 50 \text{ mA to } 500 \text{ mA}$	3 mV ± 0.03%		
Output ripple	V _{IN} = 25 V, I _O = 500 mA	120 mV _{PP}		
Short-circuit current	$V_{IN} = 25 \text{ V}, \text{ R}_{L} = 0.1 \Omega$	1.1 A		
Efficiency	V _{IN} = 25 V, I _O = 500 mA	83.7%		
Output ripple with optional filter	V _{IN} = 25 V, I _O = 500 mA	40 mV _{PP}		

10 Power Supply Recommendations

This device accepts 3 V to 40 V on the input. It is recommended to have a 1000- μ F decoupling capacitor on the input.

11 Layout

11.1 Layout Guidelines

Keep feedback loop layout trace lengths to a minimum to avoid unnecessary IR drop. In addition, the loop for the decoupling capacitor at the input should be as small as possible. The trace from V_{IN} to pin 1 of the device should be thicker to handle the higher current.

11.2 Layout Example

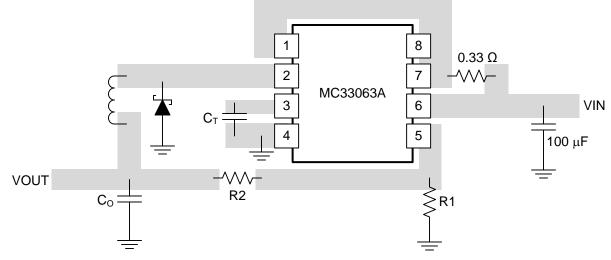


Figure 12. Layout Example for a Step-Down Converter

12 Device and Documentation Support

12.1 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

PARTS	PRODUCT FOLDER SAMPLE & BUY		TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
MC33063A	Click here	Click here	Click here	Click here	Click here
MC34063A	Click here	Click here	Click here	Click here	Click here

Table 1. Related Links

12.2 Trademarks

All trademarks are the property of their respective owners.

12.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

24-Aug-2018

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
MC33063AD	(1) ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	(6) CU NIPDAU	(3) Level-1-260C-UNLIM	-40 to 85	(4/5) M33063A	Samples
MC33063ADE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	M33063A	Samples
MC33063ADG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	M33063A	Samples
MC33063ADR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	M33063A	Samples
MC33063ADRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	M33063A	Samples
MC33063ADRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	M33063A	Samples
MC33063ADRJR	ACTIVE	SON	DRJ	8	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	ZYF	Samples
MC33063AP	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	-40 to 85	MC33063AP	Samples
MC33063APE4	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	-40 to 85	MC33063AP	Samples
MC34063AD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	M34063A	Samples
MC34063ADE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	M34063A	Samples
MC34063ADG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	M34063A	Samples
MC34063ADR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	M34063A	Samples
MC34063ADRJR	ACTIVE	SON	DRJ	8	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	0 to 70	ZYF	Samples
MC34063ADRJRG4	ACTIVE	SON	DRJ	8	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	0 to 70	ZYF	Samples
MC34063AP	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	0 to 70	MC34063AP	Samples
MC34063APE4	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	0 to 70	MC34063AP	Samples

24-Aug-2018

(1) The marketing status values are defined as follows:
 ACTIVE: Product device recommended for new designs.
 LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
 NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
 PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
 OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <= 1000ppm threshold. Antimony trioxide based flame retardants must also meet the <= 1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

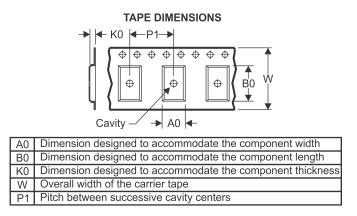
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF MC33063A :

• Automotive: MC33063A-Q1

NOTE: Qualified Version Definitions:

• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

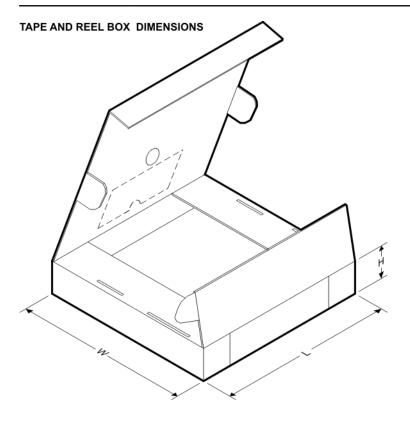

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

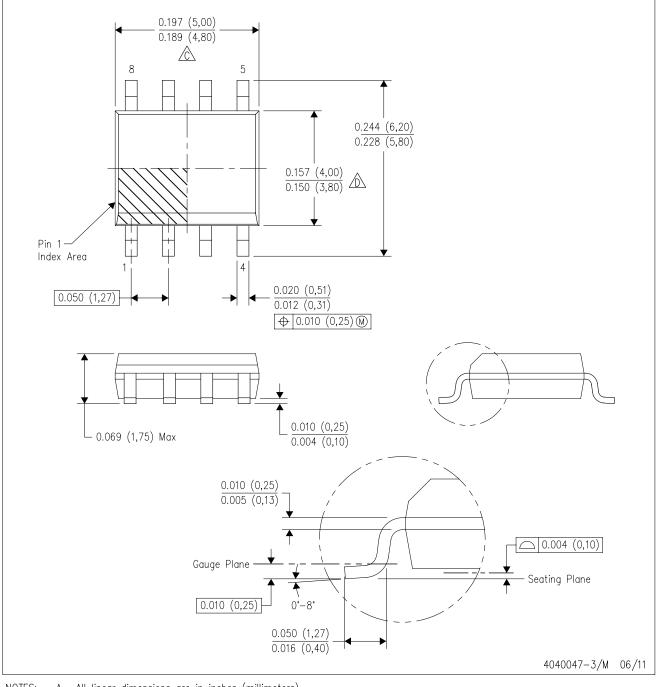

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
MC33063ADR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
MC33063ADR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
MC33063ADRJR	SON	DRJ	8	1000	330.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2
MC34063ADR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
MC34063ADRJR	SON	DRJ	8	1000	180.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

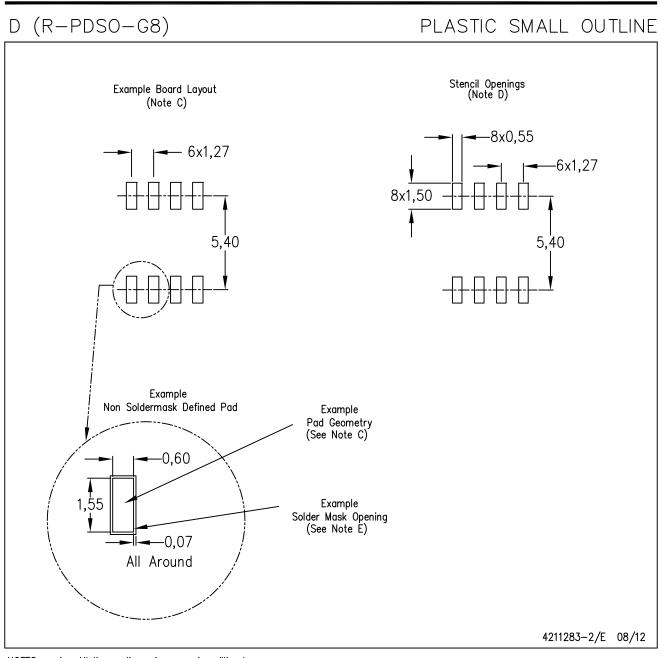
17-Oct-2015



*All dimensions are nominal

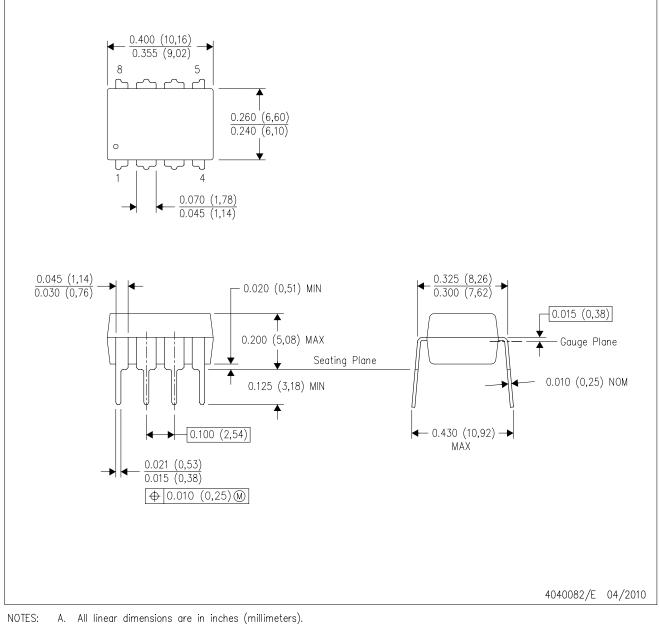
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
MC33063ADR	SOIC	D	8	2500	367.0	367.0	35.0
MC33063ADR	SOIC	D	8	2500	340.5	338.1	20.6
MC33063ADRJR	SON	DRJ	8	1000	367.0	367.0	35.0
MC34063ADR	SOIC	D	8	2500	340.5	338.1	20.6
MC34063ADRJR	SON	DRJ	8	1000	210.0	185.0	35.0

D (R-PDSO-G8)


PLASTIC SMALL OUTLINE

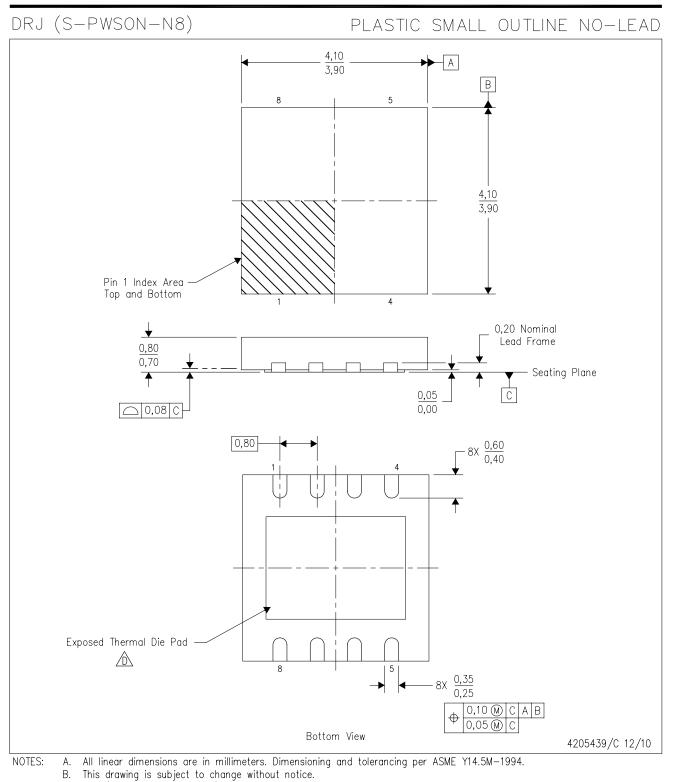
NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

P(R-PDIP-T8)


PLASTIC DUAL-IN-LINE PACKAGE

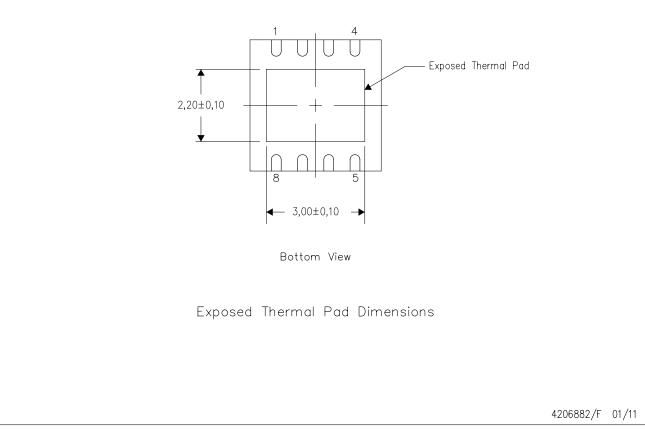
- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

MECHANICAL DATA

C. SON (Small Outline No-Lead) package configuration.

The package thermal pad must be soldered to the board for thermal and mechanical performance. See the Product Data Sheet for details regarding the exposed thermal pad dimensions.

E. Package complies to JEDEC MO-229 variation WGGB.

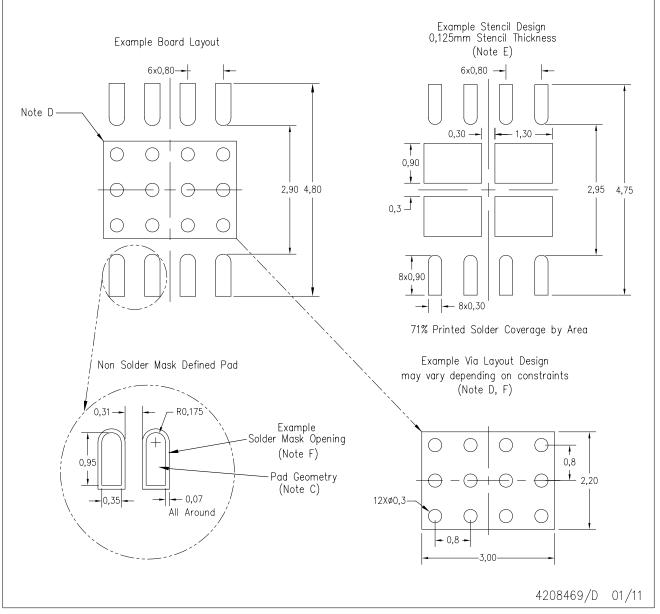


THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.



NOTE: All linear dimensions are in millimeters

DRJ (S-PWSON-N8)

SMALL PACKAGE OUTLINE NO-LEAD

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- E. Laser cutting apertures with electropolish and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for solder mask tolerances and vias tenting recommendations for vias placed in the thermal pad.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated